Advanced Computer Vision THU×SENSETIME - 80231202 ### **Chapter 2 - Section 11** # **Model Compression** Ruihao Gong Friday, May 6, 2022 **Part 1: Quantization** **Part 2: Pruning** Part 3: Knowledge Distillation (KD) Part 4: Neural Architecture Search (NAS) Summary ### **Background** High Performance Server VS Low-power Edge Device ### **Background** ### **Part 1: Quantization** Part 2: Pruning Part 3: Knowledge Distillation (KD) **Part 4: Neural Architecture Search (NAS)** **Summary** - What is Model Quantization? - Quantization maps the 32-bit floating-point numbers into low-bit fixed-point numbers, or a mapping from **continues** real numbers to **discrete** integers. • Applying quantization to model parameters (e.g. weights & bias) can save memory footprint. For example, 8-bit quantization can save **4x** memory space. Applying quantization to both parameters and activations can accelerate the inference by replacing the floating-point multi-adds operations to low-power fixed-point ones. ### What can Quantization do? **Figure 7:** (Left) Comparison between peak throughput for different bit-precision logic on Titan RTX and A100 GPU. (Right) Comparison of the corresponding energy cost and relative area cost for different precision for 45nm technology [95]. As one can see, lower precision provides exponentially better energy efficiency and higher throughput. ### Uniform Quantization - Can be represented by fixed-point integers. - Can compress and accelerate the inference. - Non-Uniform Quantization - Levels are arbitrarily spaced. - Non-uniform quantization schemes are difficult to be deployed efficiently on general computation hardware. Figure taken from Gholami et al., 2021, A Survey of Quantization Methods for Efficient Neural Network Inference ### Symmetric Quantization $$x_q = clip\left(\text{round}\left(\frac{x}{s}\right), n, p\right)$$ - Symmetric quantization quantize parameters within $(-\alpha, \alpha)$. - 0 will be quantized to exactly integer 0. ### Asymmetric Quantization $$x_q = clip\left(\text{round}\left(\frac{x}{s} - z\right), n, p\right)$$ - Much more flexible $(-\alpha, \beta)$. - Must ensure 0 will be quantized to an integer Z exactly. Figure taken from Gholami et al., 2021, A Survey of Quantization Methods for Efficient Neural Network Inference - Layer-wise Quantization - The same clipping range is applied to all weights in a layer. - Could have bad results if channels differ a lot. - Channel-wise Quantization - Assign each channel a unique clipping range. - The computation may become more complex than layer-wise. Weight range of a DW-Conv layer in MobileNetV2 gure taken from Nagel et al., 2019, Data-Free uantization Through Weight Equalization and Bias orrection. ### Two ways to produce quantized models - 1. Post Training Quantization (PTQ) - 2. Quantization Aware Training (QAT) ### **Post-Training Quantization** - Features of PTQ - Low-cost, only need a pretrained model and calibration data (10~1000 training images) to finish quantization. - Fast, PTQ can quantize model in several minutes. - Easy to use, only an API call. - Low performance: Quantizing a ResNet-18 to to 4-bit can only have 39% accuracy, as explained in [1]. Figure taken from Gholami et al., 2021, A Survey of Quantization Methods for Efficient Neural Network Inference ### **Post-Training Quantization** - How to calibrate quantized models? - In PTQ, we need to estimate the quantization range of both weights and activations. Several ways to find the quantization range: - Use min-max range - Minimize Mean Squared Error - Minimize KL Divergence Loss ### **Quantization-Aware Training** ### Features of QAT - End-to-end training. Requires all training images and huge computing resources. - Slow, need >100 GPU hours. - Not Easy to use, we have to modify the training codes. - High performance: Quantizing a ResNet-18 to 3-bit can retain original FP model performance [1]. Figure taken from Gholami et al., 2021, A Survey of Quantization Methods for Efficient Neural Network Inference ### **Quantization-Aware Training** - How to learn a quantized model? - The quantization function (round-to-integers) is not differentiable. To perform standard backpropagation, we need to estimate the gradients of step function: ### **Quantization-Aware Training** ### Folding Batch Normalization Layers Figure C.5: Convolutional layer with batch normalization: training graph Figure C.6: Convolutional layer with batch normalization: inference graph ### **Post-Training Finetuning Quantization** - Is there an intermediate space between PTQ and QAT? - Recently, Nagel et al. 2020 and Li et al. 2021 propose to reconstruct the internal output of the quantized model to optimize the quantized weights. ### **Post-Training Finetuning Quantization** #### Block-wise Reconstruction (BRECQ) #### **QDrop** $$\operatorname{QDROP}: u = \begin{cases} 0 & \text{with probability } p \\ \frac{\hat{a}}{a} - 1 & \text{with probability } 1 - p \end{cases}.$$ #### **Experimental Results** | Methods | Bits (W/A) | ResNet-18 | ResNet-50 | MobileNetV2 | RegNet-600MF | RegNet-3.2GF | MNasNet-2.0 | |---------------------------------|------------|--------------------|--------------------------------------|------------------|--------------------|------------------|------------------| | Full Prec. | 32/32 | 71.08 | 77.00 | 72.49 | 73.71 | 78.36 | 76.68 | | ACIQ-Mix (Banner et al., 2019) | 4/4 | 67.0 | 73.8 | | - | - | - | | ZeroQ (Cai et al., 2020)* | 4/4 | 21.71 | 2.94 | 26.24 | 28.54 | 12.24 | 3.89 | | LAPQ (Nahshan et al., 2019) | 4/4 | 60.3 | 70.0 | 49.7 | 57.71* | 55.89* | 65.32* | | AdaQuant (Hubara et al., 2020) | 4/4 | 67.5 | 73.7 | 34.95* | - | - | - | | Bit-Split (Wang et al., 2020) | 4/4 | 67.56 | 73.71 | - | - | - | | | BRECQ (Ours) | 4/4 | $69.60 {\pm} 0.04$ | $\textbf{75.05} {\pm} 0.09$ | 66.57 ± 0.67 | $68.33 {\pm} 0.28$ | 74.21 ± 0.19 | 73.56 ± 0.24 | | ZeroQ (Cai et al., 2020)* | 2/4 | 0.08 | 0.08 | 0.10 | 0.10 | 0.05 | 0.12 | | LAPQ (Nahshan et al., 2019)* | 2/4 | 0.18 | 0.14 | 0.13 | 0.17 | 0.12 | 0.18 | | AdaQuant (Hubara et al., 2020)* | 2/4 | 0.21 | 0.12 | 0.10 | - | - | | | Brecq (Ours) | 2/4 | $64.80 {\pm} 0.08$ | $\textbf{70.29} {\pm} \textbf{0.23}$ | 53.34 ± 0.15 | 59.31 ± 0.49 | 67.15 ± 0.11 | 63.01 ± 0.35 | ### **Zero-Shot Quantization** - Zero-Shot Quantization or Data-Free Quantization - ZSQ requires no real data for model quantization. - Need to synthesize artificial data. - In Cai et al. 2020, the data is **learned** by gradient descent by matching its statistics variable with BN running mean and variance. Gaussian Random Data Synthesized Data ### **Zero-Shot Quantization** - Weight Equalization - Modify weights to suitable-for-quantization $$W_i \leftarrow \frac{\alpha_{i-1}}{\alpha_i} W_i$$ #### **Mixed-Precision** - Why mixed-precision? - Different layers have different sensitivities for quantization - Different layers have different hardware performances - We can assign less bits to non-sensitive layers and high hardware cost layers Figure 5: Quantization policy under model size constraints for MobileNet-V2. Our RL agent allocates *more* bits to the depthwise convolutions, since depthwise convolutions have *fewer* number of parameters. ### **Hardware Quantization Scheme** | Hardware | Company | Inference Library | Bit-width | Quantization Scheme | | |-------------------|-------------------------|-------------------|-----------|---|--------------------------------| | GPU | NVIDIA | TensorRT | 8 | Uniform symmetric per channel | | | | | | FP16 | IEEE 754 | | | | | NART-QUANT | 4/8 | Uniform symmetric per layer/channel | | | 3559/3519/3516 | Hisilicon | NNIE | 8/16 | Log | | | Ceva DSP | Ceva | - | 8/16 | Uniform asymmetric per layer/channel | | | Hexagon DSP | Qualcomm | SNPE | 8 | Uniform asymmetric per layer | | | Adreno 5/6 serial | Qualcomm | OCL | FP16 | IEEE 754 without Subnormal | | | ARM | ARM | NART-QUANT | 2-8 | Uniform asymmetric per layer | | | WUQI | WUQI tech. | WUQI sdk | 8/16 | Ristretto | | | SigmaStar | SigmaStar
Technology | SigmaStar sdk | 8/16 | Uniform symmetric weight(per channel), symmetric activation | | | Accord 210 | HUAWEI | m d 040 | ۸۵۱ | 8 | Uniform asymmetric per channel | | Ascend 310 | | ACL | FP16 | IEEE 754 | | | Ambarella | Ambarella | CVFlow | 8/16 | Ristretto | | | Ambarella | | | FP16 | IEEE 754 | | | FPGA | Xilinx | Vitis-AI | Int8 | Ristretto | | ### **MQBench** ▼ 支持近10种硬件平台后端量化,包括GPU、Vitis、DSP、NNIE、TVM、OpenVINO、Tengine等大类 - ☑ 同时支持CV和NLP任务 - ☑一键量化 - ▼ 支持了PTQ和QAT的SOTA算法 贡献 **OpenVINO** 7种统计算法 8种量化算法 **Best Practice** https://github.com/ModelTC/MQBench 高级离线量化: https://mqbench.readthedocs.io/en/latest/user_guide/PTQ/advanced.html 支持的典型算法举例: LSQ DoReFa **PACT** AdaRound BRECQ QDrop **Part 1: Quantization** **Part 2: Pruning** Part 3: Knowledge Distillation (KD) **Part 4: Neural Architecture Search (NAS)** Summary ### Pruning - The process of **removing weight connections** in a network to increase inference speed and decrease model storage size.[1] - Removing unused parameters from the over-parameterized network.[1] - Levels of Pruning - Channel/Filter; Layer; Block Pipeline **Figure 1:** A typical three-stage network pruning pipeline. One example of iterative pruning Ref. [1] Liu, et al. Rethinking the Value of Network Pruning. ICLR2019 [2] Molchanov, et al. Pruning Convolutional Neural Networks for Resource Efficient Inference. ICLR2017 Ref. [1] Han, et al. Learning both Weights and Connections for Efficient Neural Networks. NIPS2015 ### Sparsity Structure - Structured - Unstructured - Schemes - Data-free - Data-driven - Training-aware Fig. 10. Overview of schemes to select candidate elements for removal during sparsification ### **Data-free Pruning** - L1-norm based[1] - Similarity based[2] Figure 1: Pruning a filter results in removal of its corresponding feature map and related kernels in the next layer. Ref. [1] Li, et al. Pruning Filters for efficient convnets. ICLR2017 [2] Data-free parameter pruning for Deep Neural Networks. BMVC2015. $$z_{n} = a_{1}h(W_{1}^{T}X) + \dots + a_{i}h(W_{i}^{T}X) + \dots + a_{j}h(W_{j}^{T}X) + \dots$$ $$z_{n-1} = a_{1}h(W_{1}^{T}X) + \dots + (a_{i} + a_{j})h(W_{i}^{T}X) + \dots$$ $$min(E\langle (z_{n} - z_{n-1})^{2} \rangle) \leq min(\langle a_{j}^{2} \rangle \| \varepsilon_{i,j} \|_{2}^{2}) E\|X\|_{2}^{2}$$ $$s_{i,j} = \langle a_{j}^{2} \rangle \| \varepsilon_{i,j} \|_{2}^{2}.$$ - 1. Compute the saliency $s_{i,j}$ for all possible values of (i,j). It can be stored as a square matrix M, with dimension equal to the number of neurons in the layer being considered. - 2. Pick the minimum entry in the matrix. Let it's indices be (i', j'). Delete the j''^{th} neuron, and update $a_{i'} \leftarrow a_{i'} + a_{j'}$. - 3. Update M by removing the j^{th} column and row, and updating the i^{th} column (to account for the updated $a_{i'}$.) ### **Data-driven Pruning** - ThiNet[1] - least effect on the next layer's output - Regression based feature reconstruction[2] - LASSO $$\underset{S}{\operatorname{arg\,min}} \sum_{i=1}^{m} \left(\hat{y}_{i} - \sum_{j \in S} \mathbf{\hat{x}}_{i,j} \right)^{2}$$ s.t. $$|S| = C \times r, \quad S \subset \{1, 2, \dots, C\}.$$ (5) Ref. [1] Luo, et al. A filter level of pruning method for deep neural network compression. ICCV2017. [2] He, et al. Channel pruning for accelerating very deep neural networks. ICCV2017 ### **Training-aware: Optimal Brain Damage[1]** ### Cost Function E = Cost(Train) + R(Network Complexity) Approximate E by a Taylor series. $$\delta E = \frac{1}{2} \sum_{i} h_{ii} \delta u_i^2 \qquad \frac{\partial^2 E}{\partial a_i^2} = f'(a_i)^2 \sum_{l} w_{li}^2 \frac{\partial^2 E}{\partial a_l^2} + f''(a_i) \frac{\partial E}{\partial x_i}$$ - 1. Choose a reasonable network architecture - 2. Train the network until a reasonable solution is obtained - 3. Compute the second derivatives h_{kk} for each parameter - 4. Compute the saliencies for each parameter: $s_k = h_{kk} u_k^2/2$ - 5. Sort the parameters by saliency and delete some low-saliency parameters - 6. Iterate to step 2 ### **Training-aware: Optimal Brain Damage[1]** $$x_i = f(a_i)$$ and $a_i = \sum_j w_{ij} x_j$ $$\delta E = \sum_{i} g_i \delta u_i + \left[\frac{1}{2} \sum_{i} h_{ii} \delta u_i^2 + \frac{1}{2} \sum_{i \neq j} h_{ij} \delta u_i \delta u_j + O(||\delta U||^3) \right]$$ $$\frac{\partial^2 E}{\partial a_i^2} = f'(a_i)^2 \sum_l w_{li}^2 \frac{\partial^2 E}{\partial a_l^2} + f''(a_i) \frac{\partial E}{\partial x_i}$$ ### **Training-aware Pruning** - Network Slimming[1] - pruning by channel scaling factors in the following BN layer Figure 1: We associate a scaling factor (reused from a batch normalization layer) with each channel in convolutional layers. Sparsity regularization is imposed on these scaling factors during training to automatically identify unimportant channels. The channels with small scaling factor values (in orange color) will be pruned (left side). After pruning, we obtain compact models (right side), which are then fine-tuned to achieve comparable (or even higher) accuracy as normally trained full network. ### **Rethinking the Value of Network Pruning** Ref. [1] Liu, et al. Rethinking the Value of Network Pruning. ICLR2019 ### **Rethinking the Value of Network Pruning** ### **Experiments of Predefined Structured Pruning** L1-norm | | | • | _ | | | | |-----------|-----------------------|---------------|--------------|---------------|---------------|---------------| | Dataset | Model | Unpruned | Pruned Model | Fine-tuned | Scratch-E | Scratch-B | | | VGG-16 | 93.63 (±0.16) | VGG-16-A | 93.41 (±0.12) | 93.62 (±0.11) | 93.78 (±0.15) | | | ResNet-56 ResNet-110 | 93.14 (±0.12) | ResNet-56-A | 92.97 (±0.17) | 92.96 (±0.26) | 93.09 (±0.14) | | CIFAR-10 | | | ResNet-56-B | 92.67 (±0.14) | 92.54 (±0.19) | 93.05 (±0.18) | | | | 93.14 (±0.24) | ResNet-110-A | 93.14 (±0.16) | 93.25 (±0.29) | 93.22 (±0.22) | | | Resivet-110 | | ResNet-110-B | 92.69 (±0.09) | 92.89 (±0.43) | 93.60 (±0.25) | | ImageNet | et ResNet-34 | 73.31 | ResNet-34-A | 72.56 | 72.77 | 73.03 | | imagervet | | | ResNet-34-B | 72.29 | 72.55 | 72.91 | | | | | | | | | **ThiNet** | Dataset | Unpruned | Strategy | Pruned Model | | | | | |-----------|-----------|------------|--------------|--------------|--------------|--|--| | | VGG-16 | | VGG-Conv | VGG-GAP | VGG-Tiny | | | | | 71.03 | Fine-tuned | -1.23 | -3.67 | -11.61 | | | | | 71.51 | Scratch-E | -2.75 | -4.66 | -14.36 | | | | ImageNet | /1.51 | Scratch-B | +0.21 | -2.85 | -11.58 | | | | imagervet | ResNet-50 | | ResNet50-30% | ResNet50-50% | ResNet50-70% | | | | | 75.15 | Fine-tuned | -6.72 | -4.13 | -3.10 | | | | | 76.13 | Scratch-E | -5.21 | -2.82 | -1.71 | | | | | 70.13 | Scratch-B | -4.56 | -2.23 | -1.01 | | | Scratch-E: epochs Scratch-B: FLOPs budget ### **Rethinking the Value of Network Pruning** ### **Experiments of Automatic Structured Pruning** ### **Network Slimming** | Model | Unpruned | Prune Ratio | Fine-tuned | Scratch-E | Scratch-B | |---------------|---|--|---|---|---| | VGG-19 | 93.53 (±0.16) | 70% | 93.60 (±0.16) | 93.30 (±0.11) | 93.81 (±0.14) | | PreResNet-164 | 95.04 (±0.16) | 40% | 94.77 (±0.12) | 94.70 (±0.11) | 94.90 (±0.04) | | | | 60% | 94.23 (±0.21) | 94.58 (±0.18) | 94.71 (±0.21) | | DenseNet-40 | 94.10 (±0.12) | 40% | $94.00 (\pm 0.20)$ | 93.68 (±0.18) | 94.06 (±0.12) | | | | 60% | 93.87 (±0.13) | $93.58 (\pm 0.21)$ | $93.85 (\pm 0.25)$ | | VGG-19 | 72.63 (±0.21) | 50% | $72.32 (\pm 0.28)$ | 71.94 (±0.17) | 73.08 (±0.22) | | PreResNet-164 | 76.80 (±0.19) | 40% | $76.22 (\pm 0.20)$ | $76.36 (\pm 0.32)$ | 76.68 (±0.35) | | | | 60% | 74.17 (± 0.33) | $75.05 (\pm 0.08)$ | 75.73 (±0.29) | | DenseNet-40 | 73.82 (±0.34) | 40% | 73.35 (± 0.17) | $73.24 (\pm 0.29)$ | $73.19 (\pm 0.26)$ | | | | 60% | $72.46 (\pm 0.22)$ | $72.62 (\pm 0.36)$ | 72.91 (±0.34) | | VGG-11 | 70.84 | 50% | 68.62 | 70.00 | 71.18 | | | VGG-19 PreResNet-164 DenseNet-40 VGG-19 PreResNet-164 DenseNet-40 | VGG-19 93.53 (±0.16) PreResNet-164 95.04 (±0.16) DenseNet-40 94.10 (±0.12) VGG-19 72.63 (±0.21) PreResNet-164 76.80 (±0.19) DenseNet-40 73.82 (±0.34) | VGG-19 93.53 (±0.16) 70% PreResNet-164 95.04 (±0.16) 40% DenseNet-40 94.10 (±0.12) 40% VGG-19 72.63 (±0.21) 50% PreResNet-164 76.80 (±0.19) 40% DenseNet-40 73.82 (±0.34) 40% 60% | VGG-19 $93.53 (\pm 0.16)$ 70% $93.60 (\pm 0.16)$ PreResNet-164 $95.04 (\pm 0.16)$ 40% $94.77 (\pm 0.12)$ 60% $94.23 (\pm 0.21)$ DenseNet-40 $94.10 (\pm 0.12)$ 40% $94.00 (\pm 0.20)$ 60% $93.87 (\pm 0.13)$ VGG-19 $72.63 (\pm 0.21)$ 50% $72.32 (\pm 0.28)$ PreResNet-164 $76.80 (\pm 0.19)$ 40% $76.22 (\pm 0.20)$ 60% $74.17 (\pm 0.33)$ DenseNet-40 $73.82 (\pm 0.34)$ 40% $73.35 (\pm 0.17)$ 60% $72.46 (\pm 0.22)$ | VGG-19 93.53 (±0.16) 70% 93.60 (±0.16) 93.30 (±0.11) PreResNet-164 95.04 (±0.16) 40% 94.77 (±0.12) 94.70 (±0.11) 60% 94.23 (±0.21) 94.58 (±0.18) 94.10 (±0.12) 40% 94.00 (±0.20) 93.68 (±0.18) 93.87 (±0.13) 93.58 (±0.21) VGG-19 72.63 (±0.21) 50% 72.32 (±0.28) 71.94 (±0.17) PreResNet-164 76.80 (±0.19) 40% 76.22 (±0.20) 76.36 (±0.32) DenseNet-40 73.82 (±0.34) 40% 73.35 (±0.17) 73.24 (±0.29) 72.46 (±0.22) 72.62 (±0.36) | Sparse Structure Selection[2] | | Dataset | Model | Unpruned | Pruned Model | Pruned | Scratch-E | Scratch-B | |---|----------|-----------|----------|--------------|--------|-----------|-----------| |] | ImageNet | ResNet-50 | 76.12 | ResNet-41 | 75.44 | 75.61 | 76.17 | | | | | | ResNet-32 | 74.18 | 73.77 | 74.67 | | | | | | ResNet-26 | 71.82 | 72.55 | 73.41 | Ref. [1]] Liu, et al. Rethinking the Value of Network Pruning. ICLR2019 [2] Huang et al. Data-Driven Sparse Structure Selection for Deep Neural Networks. ECCV2018 # **Rethinking the Value of Network Pruning** Scratch-R Scratch-F # **Experiments of Unstructured Pruning** Model # Magnitude-based Pruning[2] | Model | Unpruned | Prune Ratio | Fine-tuned | Scratch-E | Scratch-B | |-----------------|---|--|--|--|---| | 10019 00 | 93.50 (±0.11) | 30% | 93.51 (±0.05) | 93.71 (±0.09) | 93.31 (±0.26) | | VGG-19 | | 80% | 93.52 (±0.10) | 93.71 (±0.08) | 93.64 (±0.09) | | | | 95% | 93.34 (±0.13) | 93.21 (±0.17) | 93.63 (±0.18) | | | | 30% | 95.06 (±0.05) | 94.84 (±0.07) | 95.11 (±0.09) | | PreResNet-110 | 95.04 (±0.15) | 80% | 94.55 (±0.11) | 93.76 (±0.10) | 94.52 (±0.13) | | | 100 | 95% | 92.35 (±0.20) | $91.23 (\pm 0.11)$ | 91.55 (±0.34) | | | | 30% | 95.21 (±0.17) | 95.22 (±0.18) | 95.23 (±0.14) | | DenseNet-BC-100 | 95.24 (±0.17) | 80% | 95.04 (±0.15) | 94.42 (±0.12) | 95.12 (±0.04) | | | | 95% | 94.19 (±0.15) | 92.91 (±0.22) | 93.44 (±0.19) | | | | 30% | 71.96 (±0.36) | 72.81 (±0.31) | 73.30 (±0.25) | | VGG-19 | $71.70 (\pm 0.31)$ | 50% | $71.85 (\pm 0.30)$ | $73.12 (\pm 0.36)$ | 73.77 (±0.23) | | | | 95% | $70.22 (\pm 0.38)$ | $70.88 (\pm 0.35)$ | 72.08 (±0.15) | | | | 30% | $76.88 (\pm 0.31)$ | $76.36 (\pm 0.26)$ | 76.96 (±0.31) | | PreResNet-110 | 76.96 (±0.34) | 50% | 76.60 (± 0.36) | $75.45 (\pm 0.23)$ | $76.42 (\pm 0.39)$ | | | | 95% | 68.55 (±0.51) | 68.13 (±0.64) | 68.99 (±0.32) | | | | 30% | 77.23 (±0.05) | 77.58 (±0.25) | 77.97 (±0.31) | | DenseNet-BC-100 | 77.59 (±0.19) | 50% | 77.41 (± 0.14) | $77.65 (\pm 0.09)$ | 77.80 (±0.23) | | | | 95% | 73.67 (± 0.03) | $71.47 (\pm 0.46)$ | $72.57 (\pm 0.37)$ | | VCC 16 | 72 27 | 30% | 73.68 | 72.75 | 74.02 | | VGG-10 | 13.31 | 60% | 73.63 | 71.50 | 73.42 | | PasNat 50 | 76.15 | 30% | 76.06 | 74.77 | 75.70 | | Resinet-30 | 70.13 | 60% | 76.09 | 73.69 | 74.91 | | | PreResNet-110 DenseNet-BC-100 VGG-19 PreResNet-110 | VGG-19 93.50 (±0.11) PreResNet-110 95.04 (±0.15) DenseNet-BC-100 95.24 (±0.17) VGG-19 71.70 (±0.31) PreResNet-110 76.96 (±0.34) DenseNet-BC-100 77.59 (±0.19) VGG-16 73.37 | VGG-19 93.50 (±0.11) 80% 95% PreResNet-110 95.04 (±0.15) 80% 95% DenseNet-BC-100 95.24 (±0.17) 80% 95% VGG-19 71.70 (±0.31) 50% 95% PreResNet-110 76.96 (±0.34) 50% 95% DenseNet-BC-100 77.59 (±0.19) 50% 95% VGG-16 73.37 30% 60% ResNet-50 76.15 | VGG-19 93.50 (±0.11) 80% 93.51 (±0.05) 95% 93.34 (±0.13) 30% 95.06 (±0.05) 95% 92.35 (±0.10) 95% 92.35 (±0.20) 30% 95.21 (±0.17) 80% 95.24 (±0.17) 80% 95.24 (±0.17) 80% 95.04 (±0.15) 95% 94.19 (±0.15) 95% 94.19 (±0.15) 95% 70.22 (±0.38) 71.85 (±0.30) 95% 70.22 (±0.38) 76.88 (±0.31) 76.88 (±0.31) 76.96 (±0.34) 77.23 (±0.05) 77.41 (±0.14) 95% 73.67 (±0.03) VGG-16 73.37 30% 73.63 76.06 73.63 76.06 | VGG-19 93.50 (±0.11) 30% 93.51 (±0.05) 93.71 (±0.09) 95% 93.52 (±0.10) 93.71 (±0.08) 93.71 (±0.08) 95% 93.34 (±0.13) 93.21 (±0.17) 30% 95.06 (±0.05) 94.84 (±0.07) 94.55 (±0.11) 93.76 (±0.10) 95% 92.35 (±0.20) 91.23 (±0.11) 30% 95.21 (±0.17) 95.22 (±0.18) 95% 94.19 (±0.15) 94.42 (±0.12) 95% 94.19 (±0.15) 92.91 (±0.22) 71.70 (±0.31) 50% 71.85 (±0.30) 73.12 (±0.36) 95% 70.22 (±0.38) 70.88 (±0.31) 76.36 (±0.26) PreResNet-110 76.96 (±0.34) 50% 76.60 (±0.36) 75.45 (±0.23) 95% 68.55 (±0.51) 68.13 (±0.64) 77.59 (±0.19) 50% 77.41 (±0.14) 77.65 (±0.09) 95% 73.67 (±0.03) 71.47 (±0.46) VGG-16 73.37 30% 73.63 71.50 ResNet-50 76.15 30% 76.06 74.77 | Prune Patio Ref. [1]] Liu, et al. Rethinking the Value of Network Pruning. ICLR2019 [2] Han, et al. Learning both Weights and Connections for Efficient Neural Networks. NIPS2015 # **Rethinking the Value of Network Pruning** # **Analysis of Pruned Architectures** Ref. [1]] Liu, et al. Rethinking the Value of Network Pruning. ICLR2019 # **Rethinking the Value of Network Pruning** # **Sparsity Patterns & Guided Pruning** | Layer | Width | Width* | Layer | Width | Width* | |-------|-------|----------------|-------|-------|----------------| | 1 | 64 | 39.0±3.7 | 8 | 512 | 217.3±6.6 | | 2 | 64 | 64.0 ± 0.0 | 9 | 512 | 120.0 ± 4.4 | | 3 | 128 | 127.8 ± 0.4 | 10 | 512 | 63.0 ± 1.9 | | 4 | 128 | 128.0±0.0 | 11 | 512 | 47.8 ± 2.9 | | 5 | 256 | 255.0 ± 1.0 | 12 | 512 | 62.0 ± 3.4 | | 6 | 256 | 250.5±0.5 | 13 | 512 | 88.8 ± 3.1 | | 7 | 256 | 226.0 ± 2.5 | Total | 4224 | 1689.2 | Ref. [1]] Liu, et al. Rethinking the Value of Network Pruning. ICLR2019 # **Pruning as NAS** # DMCP[1] Figure 3. The Modeling of channel pruning as a Markov process. Ref. [1]] Guo, et al. DMCP: Differentiable Markov Channel Pruning for Neural Networks. CVPR2020 # **Pruning as NAS** # DMCP[1] | Group | Model | FLOPs | Top-1 | Δ Top-1 | |----------|------------------------------|--------------|-------|---| | - | Uniform 1.0x | 300M | 72.3 | - | | | Uniform 0.75x | 210M | 70.1 | -2.2 | | | Uniform 0.5x | 97M | 64.8 | -7.5 | | | Uniform 0.35x | 59M | 60.1 | -12.2 | | | | 217M | 71.2 | -0.8 | | | MetaPruning[14] | 87M | 63.8 | -8.2 | | | | 43M | 58.3 | -13.7 | | | AMC[7] | 211M | 70.8 | -1.0 | | | AutoSlim ¹ [21] * | 300M | 74.2 | +2.4 | | MBV2 | | 211M | 73.0 | +1.2 | | IVID V Z | | 300M | 73.5 | +1.2 | | | | 211M | 72.2 | -0.1 | | | DMCP | 97M | 67.0 | -5.3 | | | DIVICE | 87M | 66.1 | -8.2
-13.7
-1.0
+2.4
+1.2
+1.2
-0.1 | | | | 59M | 62.7 | -9.6 | | | | 43M | 59.1 | -13.2 | | | DMCP* | 300M | 74.6 | +2.3 | | | DIVICE | 211M | 73.5 | +1.2 | | | Uniform 1.0x | 1.8G | 70.1 | - | |-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-------| | Res18 | FPGM[8] | 1.04G | 68.4 | -1.9 | | | DMCP | 1.04G | 69.2 | -0.9 | | | Uniform 1.0x | 4.1G | 76.6 | - | | | Uniform 0.85x | 3.0G | 75.3 | -1.3 | | | Uniform 0.75x | 2.3G | 74.6 | -2.0 | | | Uniform 0.5x | 1.1G | 71.9 | -4.7 | | | Uniform 0.25x | 278M | 63.5 | -13.1 | | | FPGM[8] | 2.4G | 75.6 | -0.6 | | | SFP [6] | 2.4G | 74.6 | -2.0 | | | | 3.0G | 76.2 | -0.4 | | | MetaPruning[14] | 2.3G | 75.4 | -1.2 | | | | 1.1G | 73.4 | -3.2 | | | | 3.0G | 76.0 | -0.6 | | | AutoSlim[21]* | 2.0G | 75.6 | -1.0 | | | | 1.1G | 74.0 | -2.6 | | | | 2.8G | 76.7 | +0.1 | | | DMCD | 2.2G | 76.2 | -0.4 | | | DMCP | 1.1G | 74.4 | -2.2 | | | 11.000 | 278M | 66.4 | -10.0 | | | I to the second | | | | Ref. [1]] Guo, et al. DMCP: Differentiable Markov Channel Pruning for Neural Networks. CVPR2020 **Part 1: Quantization** Part 2: Pruning Part 3: Knowledge Distillation (KD) **Part 4: Neural Architecture Search (NAS)** **Summary** ## **Basic Concept** - What is Knowledge Distillation? - Knowledge Distillation distill the knowledge from a larger deep neural network into a small network - Three key component: teacher model, student model and knowledge transfer Fig. 1 The generic teacher-student framework for knowledge distillation. [1] Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015. [2] Gou J, Yu B, Maybank S J, et al. Knowledge distillation: A survey[J]. International Journal of Computer Vision, 2021: 1-31. ## **Basic Concept** - What can Knowledge Distillation do? - compressing heavy deep neural networks - prevent specialists from overfitting - helps the training process of a smaller student network - improve final performance | System & training set | Train Frame Accuracy | Test Frame Accuracy | |-----------------------------------|----------------------|---------------------| | Baseline (100% of training set) | 63.4% | 58.9% | | Baseline (3% of training set) | 67.3% | 44.5% | | Soft Targets (3% of training set) | 65.4% | 57.0% | Table 5: Soft targets allow a new model to generalize well from only 3% of the training set. The soft targets are obtained by training on the full training set. # **Knowledge Distillation with Logits** - Knowledge Distillation Design - For teacher output logits t_i , student output logits s_i , one-hot label gt_i , temperature T - Soft logits: • $$t_i = \frac{\exp(\frac{z_i}{T})}{\sum_i \exp(\frac{z_i}{T})}$$, $s_i = \frac{\exp(\frac{z_i}{T})}{\sum_i \exp(\frac{z_i}{T})}$ - Soft loss: - $L_{soft} = -\sum_{i}^{K} s_{i} log t_{i}$ - Hard loss: • $$L_{hard} = -\sum_{i}^{K} gt_{i}logs_{i}$$ - KD Training: - $L = L_{hard} + \alpha L_{soft}$ # **Knowledge Distillation with Logits** - Why does Knowledge Distillation work: - Soft targets contain information of inter-class distance and in-class variance than one-hot labels - The knowledge from the teacher expresses a more general learned information that is helpful for building up a well-performing student #### Problems - The parameter selection of α and temperature T should be considered - When the capacity of the student is too low, it is hard for the student to incorporate the logits information of the teacher successfully ## **Knowledge Distillation with Intermediate Features** Feature-based distillation enables learning richer information from the teacher and provides more flexibility for performance improvement. Fig. 3. An illustration of general feature-based distillation. ^[1] Wang L, Yoon K J. Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021. ^[2] Phuong M, Lampert C H. Distillation-based training for multi-exit architectures[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 1355-1364. ## **Knowledge Distillation with Intermediate Features** - Transformation of the guided features: - Teacher and student may have different size of intermediate feature maps - Distillation positions of features: - The distillation position includes the feature map at the end of each block, at the end of each stage, etc. - Distance metric for measuring distillation: - To measure the features after transformation, the distance metric is used to construct the kd loss [1] Wang L, Yoon K J. Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021. ## **Knowledge Distillation with Intermediate Features** #### Summary TABLE 2 A taxonomy of knowledge distillation from the intermediate layers (feature maps). KP incidates knowledge projection. | Method | Teacher's TF_t | Student's TF_s | Distillation position | Distance metric | Lost knowledge | |---------------|-------------------|-------------------|-----------------------|-------------------------------|------------------------| | FitNet [52] | None | 1×1 Conv | Middle layer | L_1 | None | | AT [36] | Attention map | Attention map | End of layer group | L_2 | Channel dims | | KP [56] | Projection matrix | Projection matrix | Middle layers | L_1 + KP loss | Spatial dims | | FSP [57] | FSP matrix | FSP matrix | End of layer group | L_2 | Spatial dims | | FT [54] | Encoder-decoder | Encoder-decoder | End of layer group | L_1 | Channel + Spatial dims | | AT [36] | Attention map | Attention map | End of layer group | L_2 | Channel dimensions | | MINILM [58] | Self-ttention | Self-attention | End of layer group | KL | Channel dimensions | | Jacobian [59] | Gradient penalty | Gradient penalty | End of layer group | L_2 | Channel dims | | SVD [57] | Truncated SVD | Truncated SVD | End of layer group | L_2 | Spatial dims | | VID [8] | None | 1×1 Conv | Middle layers | KL | None | | IRG [18] | Instance graph | Instance graph | Middle layers | L_2 | Spatial dims | | RCO [60] | None | None | Teacher's train route | L_2 | None | | SP [61] | Similarity matrix | Similarity matrix | Middle layer | Frobenius norm | None | | MEAL [62] | Adaptive pooling | Adaptive pooling | End of layer group | $L_{1/2}/\mathrm{KL}/L_{GAN}$ | None | | Heo [62] | Margin ReLU | 1×1 Conv | Pre-ReLU | Partial L_2 | Negative features | | AB [63] | Binarization | 1×1 Conv | Pre-ReLU | Margin L_2 | feature values | | Chung [64] | None | None | End of layer | L_{GAN} | None | | Wang [65] | None | Adaptation layer | Middle layer | Margin L_1 | Channel + Spatial dims | | KSANC [66] | Average pooling | Average pooling | Middle layers | $L_2 + L_{GAN}$ | Spatial dims | | Kulkarni [67] | None | None | End of layer group | L_2 | None | | IR [68] | Attention matrix | Attention matrix | Middle layers | KL+ Cosine | None | | Liu [18] | Transform matrix | Transform matrix | Middle layers | KL | Spatial dims | | NST [55] | None | None | Intermediate layers | MMD | None | | Gao [69] | None | None | Intermediate layers | L_2 | None | | | | | | | | ^[1] Wang L, Yoon K J. Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021. #### **Teacher-Student Architecture** #### Pattern: - Simplified Structure : - Res34 & Res18 - **Quantized Structure:** - Res18 & Int8 Res18 - Same Structure - **Small Structure** #### Conclusion: The model capacity gap between the large deep neural network and a small student neural network can degrade knowledge transfer. Fig. 9 Relationship of the teacher and student models. May 6, 2022 #### **Teacher-Student Architecture** - Each teacher model could potentially have its own best student architecture. - NAS can be used to discover the best student model or teacher model. | Teachers | Student1 | Student2 | Comparison | |--------------------------|----------|----------|---------------------| | EfficientNet-B7 [31] | 65.8% | 66.6% | student1 < student2 | | Inception-ResNet-v2 [28] | 67.4% | 66.1% | student1 > student2 | Table 1. ImageNet accuracy for students with different teachers. Figure 1. Searching neural architectures by the proposed AKD and conventional NAS [30] lead to different optimal architectures. [1] Liu Y, Jia X, Tan M, et al. Search to distill: Pearls are everywhere but not the eyes[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 7539-7548. #### **More Advanced KD Methods** - Multi-Teacher: employ multiple supervision knowledge - Date-Free Distillation: requires no training data Fig. 11 The generic framework for multi-teacher distillation. #### **More Advanced KD Methods** - Offline Distillation: most common form, the large teacher model is first trained and 2) the teacher model is used to guide the training of the student model during distillation. - Online Distillation: both the teacher model and the student model are updated simultaneously, and the whole knowledge distillation framework is end-to-end trainable. - Self-Distillation: the same networks or supernet (BigNAS[1]) are used for the teacher and the student models Fig. 8 Different distillations. The red color for "pre-trained" means networks are learned before distillation and the yellow color for "to be trained" means networks are learned during distillation **Part 1: Quantization** Part 2: Pruning Part 3: Knowledge Distillation (KD) Part 4: Neural Architecture Search (NAS) **Summary** # Deep Learning relays heavily on novel deep neural nets. # NAS focus on automating the network architecture design. ## **NAS Milestones** #### **NAS Literature 1: NASNet** ## Main steps: - 1. RNN controller(Agent) generates child architecture A with prob p - 2. Train child network A on proxy task get validation accuracy R - 3. Use prob p and accuracy R to update the agent - 4. Back to setp1 # Key problems Every child needs to be trained from scratch on proxy task, which introduces prohibitive cost: thousands of GPU-days. Figure 1. Overview of Neural Architecture Search [71]. A controller RNN predicts architecture A from a search space with probability p. A child network with architecture A is trained to convergence achieving accuracy R. Scale the gradients of p by R to update the RNN controller. ^[1] Zoph, Barret, and Quoc V. Le. "Neural architecture search with reinforcement learning." arXiv preprint arXiv:1611.01578 (2016). ^[2] Zoph, Barret, et al. "Learning transferable architectures for scalable image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. #### **NAS Literature 2: ENAS** #### Contributions - ENAS proposes sharing parameters strategy, i.e. reusing partial weights from the former trained child network. ENAS significantly reduces the overall cost. - ENAS can also be viewed as a weightsharing supernet approach. Figure 2. The graph represents the entire search space while the red arrows define a model in the search space, which is decided by a controller. Here, node 1 is the input to the model whereas nodes 3 and 6 are the model's outputs. #### **NAS Literature 3: One-shot NAS** #### Contributions - One-shot NAS builds a weight-sharing supernet in which each subnet can be viewed as a candidate architecture. - One-shot NAS trains the supernet properly and uses the subnet validation accuracy to estimate the final candidate performance. - Supernet training is a once cost, so it orderly reduces the cost. #### Drawbacks Unreliable performance ranking in supernet. ^[1] Bender, Gabriel, et al. "Understanding and simplifying one-shot architecture search." International Conference on Machine Learning. PMLR, 2018. ^[2] Stamoulis, Dimitrios, et al. "Single-path nas: Designing hardware-efficient convnets in less than 4 hours." Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Cham, 2019. ^[3] Guo, Zichao, et al. "Single path one-shot neural architecture search with uniform sampling." European Conference on Computer Vision. Springer, Cham, 2020. #### **NAS Literature 4: MNasNet** #### Contributions - Searching directly on large dataset ImageNet. - Integrating platform latency to the searching reward calculation, which helps to find a architecture that achieves the best latencyaccuracy tradeoff. #### **Drawbacks** Following NASNet costly RL-based searching algorithm: Thousands of TPU days Figure 1: An Overview of Platform-Aware Neural Architecture Search for Mobile. Figure 2: Accuracy vs. Latency Comparison – Our Mnas-Net models significantly outperforms other mobile models [29, 36, 26] on ImageNet. Details can be found in Table 1. [1] Liu, Hanxiao, Karen Simonyan, and Yiming Yang. "Darts: Differentiable architecture search." arXiv preprint #### **NAS Literature 5: DARTS** #### Contributions - Building a fully-connected supernet, each path contains several operations. - Using bi-level optimization method to update the architecture parameters and weights. #### **Drawbacks** - Because every operator is maintained in the computation graph, DARTS is memory hungry. Typically, DARTS searches the cell on CIFAR10 and then transfers it to ImageNet. - DARTS is one of the most well-known NAS baselines. There are many good follow-up papers, like P-DARTS[2], PCDARTS[3] Figure 1: An overview of DARTS: (a) Operations on the edges are initially unknown. (b) Continuous relaxation of the search space by placing a mixture of candidate operations on each edge. (c) Joint optimization of the mixing probabilities and the network weights by solving a bilevel optimization problem. (d) Inducing the final architecture from the learned mixing probabilities. ^[1] Liu, Hanxiao, Karen Simonyan, and Yiming Yang. "Darts: Differentiable architecture search." arXiv preprint arXiv:1806.09055 (2018). ^[2] Chen, Xin, et al. "Progressive differentiable architecture search: Bridging the depth gap between search and evaluation." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019. ^[3] Xu, Yuhui, et al. "PC-DARTS: Partial channel connections for memory-efficient architecture search." arXiv preprint arXiv:1907.05737 (2019). # **NAS Literature 6: ProxylessNAS** #### Contributions - Searching directly on large dataset ImageNet. - Utilizing real hardware latency as a constraint factor. - Proposing binary gate method, which maintains only O(1) operator in the computation graph, to solve the memory issue. Figure 1: ProxylessNAS directly optimizes neural network architectures on target task and hardware. Benefiting from the directness and specialization, ProxylessNAS can achieve remarkably better results than previous proxy-based approaches. On ImageNet, with only 200 GPU hours (200 × fewer than MnasNet (Tan et al., 2018)), our searched CNN model for mobile achieves the same level of top-1 accuracy as MobileNetV2 1.4 while being 1.8× faster. Figure 2: Learning both weight parameters and binarized architecture parameters. #### **NAS Literature 7: EfficientNet** #### Contributions - The traditional scaling-up method is to increase a single dimension. EfficientNet proposes a compound scaling method which increases width, depth and resolution simultaneously. - A set of good scaling up parameters is found by grid search, and the result of SOTA is obtained by scale up from MNasNet(EfficientNet-B0) Figure 2. Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio. ^[1] Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International Conference on Machine Learning. PMLR, 2019. [2] Tan, Mingxing, and Quoc V. Le. "EfficientNetV2: Smaller Models and Faster Training." arXiv preprint arXiv:2104.00298 (2021). ## **NAS Literature 8: OFA/ BigNAS** #### Contributions - Former one-shot NAS methods need to retrain the found architecture from scratch to obtain the final accuracy. OFA/BigNAS can directly deploy the subnet without further retraining. - Supernet training is a once cost. We can sample and deploy a series of different architectures under different constraint. Figure 1: Left: a single once-for-all network is trained to support versatile architectural configurations including depth, width, kernel size, and resolution. Given a deployment scenario, a specialized subnetwork is directly selected from the once-for-all network without training. Middle: this approach reduces the cost of specialized deep learning deployment from O(N) to O(1). Right: once-for-all network followed by model selection can derive many accuracy-latency trade-offs by training only once, compared to conventional methods that require repeated training. Fig. 1: Comparison with several existing workflows. We use nested squares to denote models with shared weights, and use the size of the square to denote the size of each model. Workflow in the middle refers the concurrent work from [5], where submodels are sequentially induced through progressive distillation and channel sorting. We simultaneously train all child models in a single-stage model with proposed modifications, and deploy them without retraining or finetuning. [1] Cai, Han, et al. "Once-for-all: Train one network and specialize it for efficient deployment." arXiv preprint arXiv:1908.09791 (2019). [2] Yu, Jiahui, et al. "Bignas: Scaling up neural architecture search with big single-stage models." European Conference on Computer Vision. Springer, Cham, 2020. # A taxonomy of NAS | Search Strategy | Important Work | | | |-------------------------------|---------------------------------------------------------|--|--| | Individual – Reinforcement | NASNet, PNAS, Block-QNN, MNasNet, EfficientNet, NAS-FPN | | | | Individual – Evolutionary | AmoebaNet, Genetic cnn, Evolved transformer | | | | Weight-Sharing Heuristic | ENAS, Smash, SPOS, FairNAS, OFA, BigNAS | | | | Weight-Sharing Differentiable | DARTs, PDARTs, PCDARTs, NAO, SNAS, ProxylessNAS, | | | | Predictor-based Search | Chamnet, Peephole | | | [1] Xie, Lingxi, et al. "Weight-Sharing Neural Architecture Search:\\A Battle to Shrink the Optimization Gap." arXiv preprint arXiv:2008.01475 (2020). #### **NAS + Different CV tasks** ### NAS + XX Task? Object Detection: Semantic Segmentation: Generative Models: DetNAS NASFPN EfficientDet ••• AutoDeepLab ••• AutoGan AdversarialNAS • • • # **NAS + Different ML algorithms** # NAS + XX Learning? Unsupervised Learning[1] Domain Adaptation[2] Transfer Learning[3] Multi-Task Learning[4] Meta Learning[5] - [1] ECCV2020. Liu, Chenxi, et al. "Are Labels Necessary for Neural Architecture Search?." - [2] NeurIPS 2020. Li, Yanxi, et al. "Adapting neural architectures between domains." -> AdaptNAS - [3] NeurIPS 2020. Cai, Han, et al. "Tiny Transfer Learning: Towards Memory-Efficient On-Device Learning." - [4] CVPR 2020. Gao, Yuan, et al. "Mtl-nas: Task-agnostic neural architecture search towards general-purpose multi-task learning." - [5] ICLR 2019. Lian, Dongze, et al. "Towards fast adaptation of neural architectures with meta learning." -> T-NAS # NAS + Unsupervised Learning Unsupervised NAS: We can achieve comparable NAS results without labels. Figure 1: Unsupervised neural architecture search, or UnNAS, is a new problem setup that helps answer the question: are labels necessary for neural architecture search? In traditional unsupervised learning (top panel), the training phase learns the weights of a fixed architecture; then the evaluation phase measures the quality of the weights by training a classifier (either by fine-tuning the weights or using them as a fixed feature extractor) using supervision from the target dataset. Analogously, in UnNAS (bottom panel), the search phase searches for an architecture without using labels; and the evaluation phase measures the quality of the architecture found by an UnNAS algorithm by training the architecture's weights using supervision from the target dataset. [1] ECCV2020. Liu, Chenxi, et al. "Are Labels Necessary for Neural Architecture Search?." **Part 1: Quantization** Part 2: Pruning Part 3: Knowledge Distillation (KD) Part 4: Neural Architecture Search (NAS) **Summary** # **Model Compression** - Quantization: utilizing integer only arithmetic to speed up the inference - Pruning: removing unnecessary connections to get smaller models - KD: distilling teacher models' knowledge into smaller ones - NAS: designing efficient models in an automatic way ## 推荐阅读 ## Quantization: - https://arxiv.org/pdf/1806.08342.pdf - https://arxiv.org/abs/2103.13630 - https://arxiv.org/abs/2004.09602 - https://github.com/ModelTC/MQBench # Pruning: - https://arxiv.org/abs/2102.00554 - https://arxiv.org/abs/2007.00864 #### KD: https://arxiv.org/pdf/2004.05937.pdf #### NAS: https://www.automl.org/automl/literature-on-neural-architecture-search/